supereight
|
Functions | |
template<typename T > | |
constexpr bool | is_power_of_two (const T x) |
constexpr int | log2_const (int n) |
static unsigned | power_two_up (const float x) |
template<typename T > | |
T | fracf (const T &v) |
template<typename T > | |
T | floorf (const T &v) |
template<typename T > | |
T | fabs (const T &v) |
template<typename Scalar > | |
constexpr Scalar | sq (Scalar a) |
template<typename Scalar > | |
constexpr Scalar | cu (Scalar a) |
template<typename Scalar > | |
bool | in (const Scalar v, const Scalar a, const Scalar b) |
static Eigen::Vector3f | plane_normal (const Eigen::Vector3f &p1, const Eigen::Vector3f &p2, const Eigen::Vector3f &p3) |
Compute the normal vector of a plane defined by 3 points. | |
static Eigen::Matrix3f | hat (const Eigen::Vector3f &omega) |
hat-operator | |
static Eigen::Matrix3f | exp_and_theta (const Eigen::Vector3f &omega, float &theta) |
static Eigen::Matrix4f | exp (const Eigen::Matrix< float, 6, 1 > &a) |
Group exponential. | |
Variables | |
const Eigen::Vector3f | g_invalid_normal = Eigen::Vector3f::Zero() |
The value used for a normal vector that can't be computed. | |
|
inlinestatic |
Compute the normal vector of a plane defined by 3 points.
The direction of the normal depends on the order of the points.
hat-operator
It takes in the 3-vector representation omega
(= rotation vector) and returns the corresponding matrix representation of Lie algebra element.
Formally, the hat()-operator of SO(3) is defined as
hat(.): R^3 -> R^{3x3}, hat(omega) = sum_i omega_i * G_i
(for i=0,1,2)
with G_i
being the ith infinitesimal generator of SO(3).
The corresponding inverse is the vee()-operator, see below.
[in] | omega | rotation vector |
|
inlinestatic |
Group exponential.
This functions takes in an element of tangent space (= twist a
) and returns the corresponding element of the group SE(3).
The first three components of a
represent the translational part upsilon
in the tangent space of SE(3), while the last three components of a
represents the rotation vector omega
. To be more specific, this function computes expmat(hat(a))
with expmat(.)
being the matrix exponential and hat(.)
the hat-operator of SE(3), see below.
|
inline |
The value used for a normal vector that can't be computed.