supereight
Loading...
Searching...
No Matches
Functions | Variables
se::math Namespace Reference

Functions

template<typename T >
constexpr bool is_power_of_two (const T x)
 
constexpr int log2_const (int n)
 
static unsigned power_two_up (const float x)
 
template<typename T >
T fracf (const T &v)
 
template<typename T >
T floorf (const T &v)
 
template<typename T >
T fabs (const T &v)
 
template<typename Scalar >
constexpr Scalar sq (Scalar a)
 
template<typename Scalar >
constexpr Scalar cu (Scalar a)
 
template<typename Scalar >
bool in (const Scalar v, const Scalar a, const Scalar b)
 
static Eigen::Vector3f plane_normal (const Eigen::Vector3f &p1, const Eigen::Vector3f &p2, const Eigen::Vector3f &p3)
 Compute the normal vector of a plane defined by 3 points.
 
static Eigen::Matrix3f hat (const Eigen::Vector3f &omega)
 hat-operator
 
static Eigen::Matrix3f exp_and_theta (const Eigen::Vector3f &omega, float &theta)
 
static Eigen::Matrix4f exp (const Eigen::Matrix< float, 6, 1 > &a)
 Group exponential.
 

Variables

const Eigen::Vector3f g_invalid_normal = Eigen::Vector3f::Zero()
 The value used for a normal vector that can't be computed.
 

Function Documentation

◆ is_power_of_two()

template<typename T >
constexpr bool se::math::is_power_of_two ( const T  x)
constexpr

◆ log2_const()

constexpr int se::math::log2_const ( int  n)
constexpr

◆ power_two_up()

static unsigned se::math::power_two_up ( const float  x)
inlinestatic

◆ fracf()

template<typename T >
T se::math::fracf ( const T v)

◆ floorf()

template<typename T >
T se::math::floorf ( const T v)

◆ fabs()

template<typename T >
T se::math::fabs ( const T v)

◆ sq()

template<typename Scalar >
constexpr Scalar se::math::sq ( Scalar  a)
constexpr

◆ cu()

template<typename Scalar >
constexpr Scalar se::math::cu ( Scalar  a)
constexpr

◆ in()

template<typename Scalar >
bool se::math::in ( const Scalar  v,
const Scalar  a,
const Scalar  b 
)

◆ plane_normal()

static Eigen::Vector3f se::math::plane_normal ( const Eigen::Vector3f &  p1,
const Eigen::Vector3f &  p2,
const Eigen::Vector3f &  p3 
)
inlinestatic

Compute the normal vector of a plane defined by 3 points.

The direction of the normal depends on the order of the points.

◆ hat()

static Eigen::Matrix3f se::math::hat ( const Eigen::Vector3f &  omega)
inlinestatic

hat-operator

It takes in the 3-vector representation omega (= rotation vector) and returns the corresponding matrix representation of Lie algebra element.

Formally, the hat()-operator of SO(3) is defined as

hat(.): R^3 -> R^{3x3}, hat(omega) = sum_i omega_i * G_i (for i=0,1,2)

with G_i being the ith infinitesimal generator of SO(3).

The corresponding inverse is the vee()-operator, see below.

Parameters
[in]omegarotation vector
Returns
Corresponding matrix representation of Lie algebra element.

◆ exp_and_theta()

static Eigen::Matrix3f se::math::exp_and_theta ( const Eigen::Vector3f &  omega,
float theta 
)
inlinestatic

◆ exp()

static Eigen::Matrix4f se::math::exp ( const Eigen::Matrix< float, 6, 1 > &  a)
inlinestatic

Group exponential.

This functions takes in an element of tangent space (= twist a) and returns the corresponding element of the group SE(3).

The first three components of a represent the translational part upsilon in the tangent space of SE(3), while the last three components of a represents the rotation vector omega. To be more specific, this function computes expmat(hat(a)) with expmat(.) being the matrix exponential and hat(.) the hat-operator of SE(3), see below.

Variable Documentation

◆ g_invalid_normal

const Eigen::Vector3f se::math::g_invalid_normal = Eigen::Vector3f::Zero()
inline

The value used for a normal vector that can't be computed.